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The following 4 project proposals from the supervisors are given as suggestions in a
random (non-prioritized) order. It is allowed that the same project is written by more
than one group. Note, however, that you can put forward your suggestions for discussion.

1 High-Frequency analysis of Stochastic Volatility and
its applications to risk management

1.1 Motivation

Most of the risk measures used in the financial sector are typically described as functions
of the volatility, e.g. the so-called integrated volatility, and the beta risk factor of a given
portfolio. Moreover, the full-understanding of the volatility is crucial for pricing and
hedging financial derivatives. The standard model for the behavior of the log-prices is
given by the continuous It6’s semimartingale

t t
X; :=log S; = log Sy +/ bsds +/ osdBg, t >0, (1)
0 0

in which p and o are random processes. Here the diffusion coefficient (o) plays the role
of the (spot) volatility in the price.
1.2 Description of the project

The main goal of this project consists on the non-parametric estimation of functionals of
the so-called integrated volatility

¢
Cy = (X), :/ csds, ¢ = oo, t >0,
0

and its key role in risk management.
The estimation procedure will be performed under a high-frequency set-up: We aim
to estimate C} based on equidistant observations of the process X on [0, 71, say

X0y XA, Xoans - Xn—1)An, X7

Here T" > 0 is a fixed finite trading horizon, and A, > 0 is a sequence such that A, | 0
as n — o0o. To do this we concentrate on the asymptotic properties of some of the
fundamental estimators known in the literature:



1. Realized Covariation:

[t/An]
V= YT ATXANXY, £ 0,

i—1
where A, | 0 as n — 0o, X as in and A'X := X;n, — X_1)a,-

2. Spot Volatility: For large sample size, the statistic th’l is approximately Cj.
However, in some applications (see below), it is required to estimate not only C;
but also ¢;. This is can be done by “numerically differentiating” V;n’lz Let k, € N
be such that k, — oo and k,A, — 0 and put

k
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3. The Pre-average method. High-Frequency financial data tends to be contami-
nated by microstructure noise. By pre-averaging assets returns one can get rid of

the noise:
[t/An]—kn+1

Vite= Y XPXM >0,
i=1

where for a function g : [0, 1] — R and a sequence k,, T 0o, we have let

kn—1

VT j n
X = Z g (g) AirjX.

j=1

4. The Hayashi-Yoshida estimator. Liquidity has a big impact in the performance
of the preceding estimators: If one of the assets is not trade as often as the others,
the number of observations used to compute e.g. the realized covariance will drop
drastically. The pre-averaged Hayashi-Yoshida estimator alleviates this problem by
considering

n,3 . N,k vn,l k l
Vi (k1) = ZXz Xi Lo (tin, V tjan, ) Lisnrize, 20,
Y]
where ¥ denotes the ith observation time of the kth asset and

IF o=tk ], i=1,...,np,k=1,...,d

A second goal of the project includes the use of some of the previous estimators for risk
management purposes in one of the following topics:

Portfolio Allocation with risk measures

If X is asin represents the log-price of d risky assets, then under suitable conditions,
the daily log-returns rp := Xp — Xp_ satisty for T'=1,..., N

T
Hr|iT—1 ‘= E(TT | ~7:T71) = / bsds,

T-1
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and
T

Ypr—1 = Var(ry | Fr1) = / ceds,

T-1
where (F;):i>0 is a filtration that contains the market’s available information. Thus, if
one wishes to create a portfolio at time 7" — 1 using:

1. A conditional mean-variance criterion one must solves the optimization problem

min w'Spr_jw subject to E w; =1, W' prr—1 = p,
weRY

where w € R? represents the weights of a given portfolio.

2. The conditional value at risk (also known as expected short-fall) associated to the
portfolio with returns w’ry can be computed as

CV&RQ(MITT | ]:T—l) = w/MT|T—1 — U},ZT|T_1U)CQ,

where ¢, is a constant depending on «a. In this situation one must solves the
optimization problem

min CVaR, (w'rr | Fr_1) subject to Zwi =1, W' prr-1 = p

wERC

This makes clear that the estimation and forecasting of C} is crucial in this framework.

Hedging with implied volatility and high-frequency data

The arbitrage-free price, say I1;, of a European derivative with pay-off ¢(Sr) at maturity
T > 0 can be written using the Black-Scholes option formula and the cumulated implied

volatility as
I, = C(S,r(T —t), =),
where =Z; is the derivative’s implied volatility and
C(S,R,v) = e "E [¢p(Sexp(R —v/2+vZ))], Z~ N(0,1).
If holds, or equivalently 1S
t

— = [udt dB
S, peat + ora Dy,

[t6’s formula implies that the process (Z;);>0 is also a continuous It6’s semimartingale.
[Zhang, 2012 showed that if the implied volatility satisfies that

t t
= =9+ / psdSs + / H.ds,
0 0

then II; can be perfectly replicated by
At = 8SC(St, T(T — t), Et> + pt&,C’(St, T(T — t), Et),
i.e. almost surely

t
Ht:HOJr/ A.dS..
0

In practice, an agent that wishes to cover against a short position on the derivative needs
to estimate and forecast p;. This can be done by the relation

(59
Pt (StUt)T

Hence, p; can be estimated using the spot-volatility estimator in ([2)).
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Beta risk factor

A popular way to asses the exposure to systematic risk (or volatility) is via the so-called
Beta risk factor. The CAPM (in its continuous-time version) or more generally any
continuous-time Factor Model, asserts that a well-diversified portfolio with log-price Y
admits the representation

dYy = pdX; + dF,

where the factor X represents a set of market-portfolios while F' is the so-called unsys-

tematic risk and satisfies that
(X, F)=0.

Since

B=C (XY,

the parameter 5 measures the proportion of volatility (risk) of Y relative to the risk in
the market’s portfolio X. Investors typically seek for portfolios for which 3 is small. One
can efficiently estimate [ using any of the estimators described above and thus asses the
risk associated to Y against market’s risk.

1.3 Data and references

The main references for the theoretical part are:

e [Ait-Sahalia and Jacod, 2014] and [Jacod and Protter, 2011].
They can be complemented with

e [Boudt et al., 2021], [Barndorff-Nielsen and Shephard, 2004], [Christensen et al., 2010],
For the applications

e [Bauwens et al., 2012], [Wang and Cheng, 2022], [Nadarajah et al., 2014], [Zhang, 2012],
[Mykland and Zhang, 2008|, [Boudt et al., 2017].

High-Frequency data is available at https://www.histdata.com/.

2 Pricing under Rough Volatility

2.1 Motivation

The Black and Scholes option’s implied volatility of a European call option with time
to expiration 7 = T' — ¢ and log strike k = log(K/S;) is defined as the unique (random)
number opg(k,7) > 0 such that

Ht = CBS(Sta rT, \/;O-BS(]{;7 T))a

where II; denotes the market price of the option, and C'gg is the option’s price under the
Black and Scholes model, i.e.

Cps(S, R,v) = e "E [(Sexp(R —v/2+VvZ) — K)"|, Z ~ N(0,1).

It is well known that for a single expiration, the function k — opg(k, ) generates the
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Figure 1: Volatility Surface. Source |[Bayer et al., 2016].

so-called volatility smile (see Figure 1). Despite that this stylized fact is consistent with
the efficient price model

das.
—t = ,Utdt + O'tdBt, (3)

t
where o is a stochastic process, little can be said from the volatility surface about the
nature of the volatility process o;. Thus, in order to get a better understanding of the
latter, deeper properties of the smiles need to be studied.
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Figure 2: Non-parametric estimates of the S&P at-the-money (ATM) volatility skew.
Source |Bayer et al., 2016].

One of the most unique characteristics of volatility smiles is the so-called at-the-money



(ATM) volatility skew: For some 0 < H < 1/2, the function
(1) = |0kos(0,7)| .

satisfies the power law
(1) oc THY2,

Figure 2 shows an estimate of this function as well a fitted curve with H ~ 0.1. Un-
fortunately most of the classical stochastic volatility models where volatility is modelled
as a diffusion (like the Heston model and local volatility models) cannot reproduce this
property. On the other, several studies ([Gatheral et al., 2018], [Bennedsen et al., 2021
[Bolko et al., 2022]) have found evidence that volatility is well described by processes
driven by a fractional Brownian motion and in turn, this class of process can perfectly
reproduce the volatility skew. This new class of stochastic volatility models are now
known as rough volatility (rVol from now on) models.

2.2 Description of the project

One of the simplest rVol model is based on the so-called fractional Ornstein-Uhlenbeck
(fOU) process. Specifically, the risky asset follows the dynamics in in which the
volatility is given by o, := e¥*, where Y, satisfies the fractional SDE

dY, = —\(Y; — 0)dt + vdW [, (4)

in which € R, \,v > 0 and W¥ is a fractional Brownian motion of index H € (0,1/2).
Thus, the main goal of this project is the study and implementation of option pricing
techniques in this framework as well as its calibration. Note that W is neither a semi-
martingale nor Markovian, so classical simulations techniques cannot be directly applied.
As part of your application and model validation students may:

1. Under the rVol model —, calibrate the volatility smile and skew of options
written on the S&P500 with special emphasis on the estimation of the parameter
H.

2. Estimation and implementation of delta strategies under rough-volatility models:
Recall that the delta of a call option is given

At = 8SCBS(St7 T, UBS(k7 T)) + avCBSaSUBS(k’ T)'

2.3 Data and references

The main references for this project are:

e [Bayer et al., 2016] , [Gatheral, 2006], [Nourdin, 2013], [Bennedsen et al., 2017]
They can be complemented with

e |Gatheral et al., 2018|, [Barndorff-Nielsen et al., 2018], [Hull, 2009].

Options prices can be retrieved using the R package ‘quantmod’.



3 Point Processes and Applications

It is a relatively important feature, that the supply and demand curves within the power
markets are piecewise constant - specifically, they are caglad. That is, they are left-
continuous with right limits. To preserve this property, it is advantageous to model the
bids B = (pi,qi)!, as the realization of a point process and subsequently “interpolate”
them. Here, the name “point process” may be misleading, as the points do not follow a
process over time, albeit the structure could potentially be modeled using a time series.

In the book Random Measures, Theory and Applications by O. Kallenbergs, a point pro-
cess is defined as a random measure over a suitable set. In our setting, we may consider
a probability space (2, F,P), a suitable random variable n :  — Ny as well as random
variables (p;, ¢;)I, such that (p;, ¢;) :  — R x (0, 00). Notice, that we endow Ny with its
power set as the o-algebra, while R x (0, c0) is endowed with the typical Borel o-algebra.
Then, we can define our point process, or random measure, & : X B(R x (0,00)) — Ny
by

n(w)
{(w,B) = Zé(Pi(w)qu'(w))(B)v w € 2, B € B(R x (0,00)).
=1

Note, that £(w, B) counts the number of points (p;, ¢;) that are realized in B € B(R X
(0,00)) for a given w € (.

Since the points (p;, ¢;); determine the corresponding supply or demand function, we
can analyze the functions by modeling the points. In addition, we can understand the
risks arising from the problem’s discrete nature.

Another great advantage of this approach is that we can interact with the supply and
demand functions; we may be interested in placing our bid (p, ¢), in addition to the ran-
dom points B = (p;,¢;)";. As B is not a prior known, we do not yet know how we will
impact the supply or demand curves, but we can simulate and estimate our impact.

The project can be summarised as follows:

1 What models can be used to model the point processes of the bids to the supply
and demand curves?

2 How do these depend on fundamental variables like solar and wind production?

3 As the market clears each day, is there any temporal dependence between the point
processes?

The suggested literature is
e [Daley et al., 2003]

e [Kallenberg et al., 2017]
e [Cox and Isham, 1980]

In addition, it is of course worth surveying the papers of AAU’s researchers Jesper Mgller,
Rasmus Waagepetersen, Jakob Gulddahl Rasmussen, etc. - in particular those on spatial
or marked point processes.



4 Validation and Corrections of Forecasts

The most fundamental data in modelling power prices is weather data. Centrica has
access to a lot of weather data and has bought several forecasts from forecast providors.
However, these forecasts have proven to be erroneous at times.

To be precise, let (©2, F,P) be a probability space and assume that W : Q x N — [0, M|
is a time-series that describes the production from wind generation units; the value of M
corresponds to the total installed capacity and could, in principle, change over time. Now,
let (F,)nen be a suitable filtration for which W(n) = w — W(w,n) is F,, measurable for
all n € N.

In addition, we have access to a forecast W : Q x N — [0, M], where W(n) is F,_;
measurable. These forecasts are point forecasts and are not always correct; variations
occur as they are only forecasts, but the errors look far too systematic. In particular,
the data could suggest that the forecast providers filter away “outliers” to improve, say,
their accuracy.

To rigorously test whether the forecasts are good, we would like them to satisfy the
martingale hypothesis; suppose we are forecasting W (n) subject to the filtration F,, ;.
Then, if the forecast is good, we should have

W(n) =E[W(n) | o).

Following the paper, Testing for the Martingale Hypothesis by J. Park and Y. Whang,
one can test the martingale hypothesis. Alternatively, one can look at the series

A

e(n)=W(mn)—-W(n), neN.

By extension, one should attempt to correct the forecasts, should they be erroneous.
One approach is to utilize copulas; in the paper ”Modelling time-varying exchange rate
dependence using the conditional copula.” the author A. Patton shows the existence of a
conditional copulas, that is generalized in Time-dependent copulas by J. Fermanian and
M. Wegkamp. The advantage of utilizing copulas is, that we can numerically find the
(conditional) distribution of e(n) as defined above.

Therefore, the project can be outlined as follows:
1 Investigate whether the forecast W (n) of W (n) is “good”.

2 How can we correct the forecasts? Does correcting it make sense, or is it better to
make new forecasts?

The suggested literature is:
e [Park and Whang, 2005]
e [Patton, 2001]

e [Fermanian and Wegkamp, 2012]
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